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Abstract

The Alfvén continuum (AC) in the National Compact Stellarator Experiment (NCSX) [G. H.

Neilson et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International

Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94/IC-1] is investigated with the AC

code COBRA [Ya. I. Kolesnichenko et al., Phys. Plasmas 8, 491 (2001)]. The resonant interaction

of Alfvén eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfvén

eigenmodes residing in one of the widest gap of the NCSX AC, the ellipticity-induced gap, are

studied with the code BOA-E [V. V. Lutsenko et al., in Fusion Energy 2002, 19th Conference

Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-

94-TH/P3-16].
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I. INTRODUCTION

Shear Alfvén waves in stellarators attract considerable attention in recent years due

to their ability to be destabilized by fast ions. Various Alfvén instabilities (AI) caused

by beam ions have been observed in stellarators,1–3 and considerable losses of energetic

ions during bursts of Alfvénic activity have been reported.3 Moreover, in the stellarator

Wendelstein 7-AS4 such bursts sometimes lead to significant drops in the soft X-ray emission

from the plasma,3 which seems to evidence that the bulk plasma is also affected by the Alfvén

instabilities. Even though in many cases such instabilities do not result in significant particle

losses, studying them is still of practical interest as they can be a useful tool for the plasma

diagnostics [so-called “MHD (magnetohydrodynamic) spectroscopy”].5–7 In addition, there

is an idea to use Alfvén eigenmodes excited by external antennae for removal of the helium

ash from reactor plasmas.8

The diversity of the types of AIs possible in stellarators is rather wide. In particular,

instabilities of the GAE modes9,10 (Global Alfvén Eigenmodes) have already been observed

in stellarators.1 The so-called “gap” Alfvén eigenmodes reside in the frequency gaps that

arise in the Alfvén continuum (AC) due to deviations of the magnetic configuration from the

cylindrical symmetry. The modes that result from the poloidal asymmetry, namely, the TAE

modes11 (Toroidicity-induced Alfvén Eigenmodes), the EAE modes12 (Ellipticity-induced

Alfvén Eigenmodes), and the NAE modes12 (Noncircular triangularity-induced Alfvén Eigen-

modes), can exist both in tokamaks and in stellarators. Instabilities of TAE modes have

already been identified in stellarator experiments,2,3 whereas instabilities of EAE and NAE

modes have been observed in tokamaks,13,14 and there is no reason to deny that they can

appear in stellarators, too. The toroidal asymmetry of the stellarators results in additional

gaps, where the MAE modes15,16 (Mirror-induced Alfvén Eigenmodes) and numerous types

of HAE modes15–18 (Helicity-induced Alfvén Eigenmodes) can reside. There are evidences

that such modes have been observed in experiments.19–21

Non-ideal effects (the finite Larmor radius and plasma resistivity) are responsible for

the existence of the kinetic counterparts of the mentioned gap modes, which have fre-

quencies slightly above the corresponding AC gaps. In particular, KTAE22 (Kinetic TAE),

KMAE23,24 (Kinetic MAE), and KHAE23 (Kinetic HAE) modes have been predicted theo-

retically; KTAE25 and KEAE26 modes have been observed in tokamak experiments.
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The main purpose of this work is to study the AC structure in the proposed stellarator

NCSX27 (National Compact Stellarator Experiment). NCSX is a relatively compact device

exploiting the idea of the axial quasi-symmetry.28 In addition, this work is aimed at studying

Alfvén Eigenmodes (AE) and the resonances that provide the interaction between beam ions

and AEs.

Note that although the magnetic field in NCSX is quasi-axisymmetric, AC must have the

“non-axisymmetric” gaps, like in other stellarators, because the NCSX plasma configuration

is not axisymmetric in real space. The AC in one of the previous reference configurations of

NCSX was calculated in a recent work with the code STELLGAP.29 In the present work, we

use another code, the AC code COBRA15 (COntinuum BRanches of Alfvén waves), to study

the AC in NCSX. The numerical algorithm implemented in COBRA makes it possible to

resolve the structure of the continuum gaps with high accuracy. In particular, phenomena

associated with crossings of continuum gaps and predicted in a recent work30 are revealed.

The structure of the work is as follows. In Sec. II, the basic equations are presented, the

method of solution is outlined, and results of calculations of the AC in NCSX with the code

COBRA are presented. In Sec. III, the resonances responsible for the possible destabilization

of AEs in NCSX are analyzed, and EAE modes are calculated. Finally, the summary of the

work is given in Sec. IV.

II. ALFVÉN CONTINUUM

A. Basic equations and the method of solution

The AC code COBRA solves the following equation describing the AC in a general toroidal

configuration:15

L̂
(
gψψL̂Φ

)
+ ω2 gψψgB2

v2
A

Φ = 0, (1)

where ω is the frequency; Φ is the wave function; (ψ, θ, φ) are Boozer coordinates31 with

ψ the toroidal magnetic flux, θ and φ the poloidal and toroidal angles, respectively; L̂ =

∂/∂φ + ι∂/∂θ is an operator of differentiation along the field lines; gψψ is the corresponding

component of the contravariant metric tensor; g is the metric tensor determinant; vA =

B/(4πMini) is the Alfvén velocity; B is the magnetic field strength; Mi is the ion mass;

ni = ni(ψ) is the ion density. Equation (1) includes only derivatives by angles with ψ
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playing the part of a parameter (actually, the equation includes only derivatives along a

field line).

In the cylindrical geometry, when different harmonics of the wave are decoupled, AC

consists of the corresponding branches ω = ωmn(ψ) ≈ |k‖|vA, where k‖ ≈ (mι − n)/R0

is the longitudinal wave number, R0 = L/2π is the major radius, L is the length of the

magnetic axis. To see this, it is sufficient to recall that g ≈ R2
0/B

2 in Boozer coordinates

(in a low-pressure, low-aspect-ratio plasma) and take Φ ∝ exp(imθ − inφ).

The coupling between different harmonics, which appears due to the angular dependence

of the coefficients of Eq. (1), produces gaps in AC. When the coupling is not too strong, the

(µ, ν) Fourier harmonic of the magnetic configuration, i.e., the harmonic ∝ exp(iµθ−iνNφ),

produces a gap near the line

ω∗µν(ψ) ≈ |µι− νN | vA

2R0

(2)

on the plane (ψ, ω) [this line is the locus of the crossings of the pairs of cylindrical continuum

branches ω = ωmn(ψ) and ω = ωm+µ,n+νN(ψ) for arbitrary m and n].15 We will refer to

this gap as the (µ, ν) gap and to µ and ν as the poloidal and toroidal coupling numbers,

respectively. When the coupling is strong, which is typically the case in stellarators because

of strong shaping, the interaction between the gaps displaces them, and their frequencies

may sometimes differ from that given by Eq. (2) by a factor of two or even more.

In the code COBRA, the coefficients of Eq. (1) and the wave function are expanded in

Fourier series. Noting that an arbitrary wave harmonic with the poloidal and toroidal mode

numbers (m,n) can interact only with harmonics with the mode numbers (m + µ, n + νN),

where µ and ν are integers, N is the number of the field periods, we can take Φ in the

following form:

Φ =
∞∑

p,s=−∞
Φps exp[i(m + p)θ − i(n + sN)φ]. (3)

Then Eq. (1) is reduced to an eigenvalue problem of the form

∞∑
p,s=−∞

Gp∗,s∗;p,s(ψ, k̃‖)Φps = ω2

∞∑
p,s=−∞

Cp∗,s∗;p,s(ψ)Φps, (4)

where G and C are infinite Hermitian matrices (see Ref. 15 for details), k̃‖ = mι − n, ι is

the rotational transform. Note that m and n enter Eq. (4) only through the parameter k̃‖,

which is convenient for scanning the continuum. The code COBRA truncates Eq. (4) to a

finite size and solves it with a standard solver.
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A key element of COBRA is the selection of the obtained eigensolutions.15 The matter

is that the truncation of the matrices in Eq. (4) to a finite size is a source of error in

the solutions, and the eigenvectors having large components with mode numbers near the

truncation edge (i.e., with high mode numbers) are affected by the truncation very strongly.

As a result, some part of the calculated spectrum never converges, no matter how large

matrices are used in the calculations, unless the solutions “spoiled” by the truncation are

excluded from the spectrum. This problem is unlikely to appear in calculations of tokamak

spectra because the harmonics with different n are decoupled, and the harmonics with very

large poloidal wave numbers lie outside the spectral range of interest. As a result, taking

a sufficiently large range in m, one can always secure a sufficient accuracy of all solutions

within this range. In a stellarator AC, continuum branches with high m and n can be

found in any part of the spectrum (because ωmn = |mι− n|vA/R0 can be low for arbitrarily

high m and n). This means that for any finite matrix size the spectrum is “polluted” by

“spoiled” solutions unless some selection of solutions is introduced. In COBRA, the selection

strategy is the following. The code fixes a certain vector component that lies approximately

in the center of the region of (p, s) that are kept in Eq. (4) and selects several eigenvectors

with the largest absolute value of this component. It is assumed that then the eigenvector

components located near the edge of the region are small enough to secure a small truncation

error. For instance, in the COBRA calculations presented below, only one or two “best”

(in this sense) eigensolutions were selected for each analyzed matrix of the dimension from

259 to 451. The price of this strategy in terms of the computation time is rather high,

but our experience has shown that sufficient accuracy cannot be achieved unless we discard

most obtained solutions. The convergence of the spectra was checked by comparison of the

spectra obtained for different truncation ranges.

B. Results of calculations

For the analysis we took a 3-periodic configuration of NCSX with the major radius

R0 = 1.49 m and the central magnetic field B0 = 1.56 T.32 The configuration was calculated

by a stellarator equilibrium code and was given in a file format adopted by the NCSX

group. Accordingly, the code COBRA (the part responsible for processing the input data

and calculating the metric tensor) was extended to accept files in this format.
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The most important harmonics of gψψ for this configuration are presented versus r/a

[where r = (2ψ/B0)
1/2 is the radial coordinate, a is the minor radius, i.e., r at the plasma

boundary] in Fig. 1. Here and below we use the following normalization for the harmonics

of the metric tensor:15

gψψ = 2B̄ψδ̄hψψ
g , gψθ = δ̄B̄hψθ

g , gθθ =
δ̄B̄

2ψ
hθθ

g , (5)

hij
g = δij +

1

2

∑
µ,ν

εij
g(µ,ν) exp(iµθ − iνNφ), (6)

where i, j = ψ, θ, δij is the Kronecker symbol, bars over quantities mean averaging in φ

at the magnetic axis, δ = (κ + κ−1)/2, κ = κ(φ) is the elongation of the plasma cross

section. The quantities εij
g(µ,ν) (normalized Fourier harmonics of metric tensor components)

are functions of ψ satisfying the relationship εij
g(µ,ν) = εij∗

g(−µ,−ν), where “∗” means complex

conjugate. Note that they are introduced so that εψψ
g(0,0) → 0 and εθθ

g(0,0) → 0 at r → 0, and

εψθ
g(0,0) ≡ 0.

As was mentioned above, NCSX is a quasi-axisymmetric28 (QAS) device: The magnetic

field strength in Boozer coordinates is almost independent on φ. As a result, the particle

motion in such a device is almost like in a tokamak; in particular, there is an approximate

constant of motion associated with the quasi-symmetry (the canonical angular momentum).

However, the configuration is not symmetric in real space. As we observe in Fig. 1, the metric

coefficient gψψ has many significant harmonics that depend on φ (i.e., with ν 6= 0). Therefore,

one can expect that AC in quasi-axisymmetric stellarators is like in other stellarators rather

than in tokamaks: It has numerous gaps associated with the toroidal asymmetry of the

configuration (MAE and HAE gaps). Results of our calculations confirm this.

In our analysis we assume that the plasma consists of deuterium with the central ion

density ni0 = 1020 m−3 and consider several different ion density profiles. Note that the ion

density enters Eq. (1) through vA. As ni does not depend on θ and φ, any variation in ni

affects only the numerical magnitudes of the continuum frequencies (ω ∝ n
−1/2
i ) and does

not influence the structure of the gaps.

The calculated AC for the ion density profile of the form ni(r) = ni0(1− 0.99r2/a2)1/2 is

presented in Figs. 2 and 3. Black dots on this graph show AC obtained by solving Eq. (4)

for several values of r, with k̃‖ scanned in a certain range. The matrix dimension in this

calculation is 451, with 41 poloidal wave numbers and 11 toroidal wave numbers taken into
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account. The most important gaps are labeled by the respective coupling numbers, µ and

ν. One can see that the widest gaps are the (µ, ν) = (2, 1) gap and the (2, 0) gap, which are

produced by the plasma elongation. In the central part of the plasma, the (0, 1), (4, 1), (3, 0)

and (4, 2) gaps are also considerable. All these gaps result mainly from the corresponding

harmonics of gψψ, except for the (4, 1) and (4, 2) gaps. From Fig. 8 one can see that the

(4, 1) harmonic of the metric tensor is too small to account for the observed (4, 1) gap. The

gap results mainly from the indirect coupling through the (2, 1) and (2, 0) harmonics of the

plasma shape [(4, 1) = (2, 1) + (2, 0), see Ref. 15 for details]. The same applies to the (4, 2)

gap, which is produced mainly by the (2, 1) harmonic of the shape [(4, 2) = 2 × (2, 1)].

The TAE gap [(µ, ν) = (1, 0)] is considerable only at the periphery, for r < 0.5a, which is

one more evidence that the Alfvén spectra in QAS devices considerably differ from those in

tokamaks.

Large grey dots in Fig. 2 are the results of a similar scan of AC for the matrix dimension of

259 (37 poloidal and 7 toroidal wave numbers), which are shown here in order to estimate the

truncation error. Those parts of the continuum where the calculations have not converged

(i.e., the achieved accuracy is not sufficient to resolve the gap structure, which can be seen

from significant discrepancies between the results obtained with different matrix dimensions)

are enclosed in frames; additional calculations with the matrices of a larger size are required

to resolve these parts of the continuum. In particular, for some reasons the convergence is

very poor between the (0, 1) and (2, 1) gaps. The accuracy is insufficient near the plasma

boundary, too (except for low frequencies). The reason for this is that many harmonics

of gψψ and B grow at the plasma periphery, which manifests itself in the increase of the

widths of many gaps. As a result, more harmonics become efficiently coupled, and the size

of the matrices taken here becomes too small. One can also notice that the convergence

deteriorates near the radii where ι has the form N/l, where l is an integer (for instance, near

r/a ≈ 0.3, where ι = 3/7, r/a ≈ 0.55, where ι = 3/6, and r/a ≈ 0.8, where ι = 3/5). In

addition, at such points the code usually makes mistakes in determining the gap boundaries.

As will be shown below, this is accounted for by the influence of crossings of gaps.

The AC for a hollow density profile is shown in Fig. 4. The general structure of the

continuum gaps is, as expected, the same as in Fig. 2. However, the shape of the gaps has

changed, which may be of importance, e.g., for continuum damping.

The presence of crossings of considerable continuum gaps is an important feature of the
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NCSX AC, which is a consequence of relatively low N . We can conclude from Eq. (2)

that two gaps with the coupling numbers (µ1, ν1) and (µ2, ν2), respectively, cross when the

following relationship is satisfied:

µ1ι− ν1N = ±(µ2ι− ν2N). (7)

In LHD33 (Large Helical Device, N = 10, ι ∼ 1) and Wendelstein 7-AS (N = 5, ι ∼ 0.5),

Eq. (7) can be satisfied only when µ1 or µ2 exceeds 5, which means that, at least, one of

the crossing gaps is rather narrow. In contrast to this, crossings of gaps with low coupling

numbers are observed in NCSX. An example is the crossing of the (3, 0) and (4, 1) gaps,

which lies at r/a ≈ 0.3 (ι = 3/7) at the frequency about 200 kHz.

The behavior of AC near gap crossings was recently considered30 in connection with

certain properties of AC in Wendelstein 7-AS. It was shown that the gaps “annihilate” at the

crossing point, i.e., the width of the resulting gap at the crossing point is the difference of the

widths of the crossing gaps. In particular, when two gaps of the same widths cross, they both

disappear at the crossing point. To illustrate this, we have calculated the continuum near

the crossing of the (3, 0) and (4, 1) gaps more accurately (see Fig. 5). For this calculation,

77 poloidal wave numbers and 11 toroidal wave numbers were taken (the dimension of

the matrices was 847). The picture is similar to that obtained in Ref. 30 for a model

configuration. As here we take into account all the configuration harmonics, the calculations

are more cumbersome, and we failed to obtain as clear picture as in Ref. 30. However,

main features are quite visible. First, the gaps indeed annihilate at the crossing (the net

width of the two gaps near the crossing point is much less than the width of either gap

near the edges of the interval). Second, multiple “combination” gaps appear [in this case,

(µ, ν) = (10, 1) = (4, 1)+2× (3, 0), (11, 2) = (3, 0)+2× (4, 1), (17, 2) = 2× (4, 1)+3× (3, 0)

etc.]. It is also of importance that the continuum wave functions near the crossing point are

combinations of numerous Fourier harmonics of approximately the same amplitude, which

is associated with their strong angular localization.30 This explains why it is so difficult to

obtain good numerical resolution of the continuum near gap crossings.

Finally, it is of interest to compare our results with the results of previous work.29 Figure 3

shows the same part of AC as Fig. 6 (b) of Ref. 29. The density profiles used for these two

graphs are slightly different (the profile is parabolic in Ref. 29), and the abscissas of the

graphs show different quantities (r/a here and the normalized toroidal flux s = (r/a)2 in
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Ref. 29). Another difference between the graphs is that we show AC in general, without

trying to identify particular AC branches with certain dominant mode numbers [except for

the branches with (m,n) = (−5,−2) and (−3,−2) in Fig. 3, which will be discussed in

Sec. III], whereas Ref. 29 gives several specific branches of AC. However, these differences

must not complicate the comparison as the continuum gaps must have the same relative

widths at a certain radius. The size and the frequency location of the (2, 0) (EAE) gap

is approximately the same in Fig. 3 of the present work and in Fig. 6 (b) of Ref. 29, at

least, in the plasma core (at the periphery the gap in Ref. 29 is much more narrow; e.g.,

for r/a ≈ 0.75 ÷ 0.85, which corresponds to s ≈ 0.6 ÷ 0.7, the relative width of the (2, 0)

gap is about 15% in Ref. 29 and more than 30% in our calculations). However, even the

widest (2, 1) gap is not visible in the latter picture, although specific “jumps” of curves

above 300 kHz indicate that it is there. The color coding shows that the gap is closed by

continuum branches that lie at the boundary of the considered range of mode numbers and,

thus, could not be calculated accurately. The same is true for the curves that account for

the mentioned difference between the widths of the EAE gaps in the two graphs. Thus, the

observed differences seem to be a result of insufficient selection of solutions in Ref. 29.

III. ALFVÉN EIGENMODES AND THEIR DESTABILIZATION BY ENER-

GETIC IONS

Using the calculated AC (Figs. 2–4), one can suppose that various types of discrete AEs,

with the frequencies from 100 kHz (EAE modes) to 900 kHz (HAE42 modes, where the

subscript “42” refers to the coupling numbers) can exist. On the other hand, it folows from

Fig. 3 that TAE modes can hardly exist or, at least, they can hardly be destabilized by the

energetic ions because, first, the TAE gap is located at the plasma periphery and, therefore,

TAEs are strongly damped because of the continuum damping and, second, the energetic-

particle drive of TAEs is expected to be weak because the number of the energetic ions

(and their spatial gradient) is expected to be small at the periphery. The frequency range

between EAE and HAE in NCSX is more narrow than that in Wendelstein-line-stellarators

and LHD, which is explained by the fact that N in NCSX is smaller.

The source of energetic ions in NCSX is balanced tangential Neutral Beam Injection (NBI)

of 50-keV hydrogen atoms. This implies that circulating particles will play the main role
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in the destabilization of AEs, although the collisional pitch-angle scattering will produce a

considerable amount of trapped particles with the energy E ¿ 50 keV (partly slowed-down

particles), especially, when zeff À 1 (zeff is the effective charge number). Note that the

axial symmetry of the magnetic field strength (in flux coordinates) leads to the absence of

“non-axisymmetric” resonances of the wave–particle interaction,8 i.e., NCSX is a tokamak-

like device from the point of view of the destabilization of Alfvén modes by energetic ions.

However, a potential variety of AEs in the gaps of AC provides more characteristic resonant

velocities of the energetic ions than in tokamaks. They are8

|vr
‖| = vA∗

∣∣∣∣1±
2ι∗

µι∗ − νN

∣∣∣∣
−1

, (8)

where r∗ is the radius around which the mode is localized, µ and ν are the coupling numbers

of the gap. Equation (8) is obtained in the assumption that the gap width in AC is negligible

and the mode is well localized radially. The finite mode width and the finite gap width lead

to other resonance velocities. In particular, the finite mode width can strongly enhance the

instability providing the interaction of the mode and most energetic particles in the case

when such interaction is not possible in the local approximation (for instance, particles with

vA/3 ¿ v‖ < vA can destabilize TAE modes).34 This fact may be of importance for the

destabilization of AEs in NCSX, where vb/vA = 0.9 (vb =
√

2Eb/Mb, Eb the injection energy)

in the case of Mb = Mi, where Mb and Mi are the beam ion mass and the plasma ion mass,

respectively. When making this estimate, we took B = 1.56 T, Eb = 50 keV, ni = 1020 m−3.

Of course, the presence of gaps in AC does not guarantee the existence of weakly damped

Alfvén waves that can be destabilized through the mentioned resonances. Therefore, below

we seek for discrete AEs. We proceed from the following equation for Alfvén eigenmodes in

low-pressure plasmas:15,35

ω2∇ ·
(

1

v2
A

∇⊥Φ

)
+ B∇‖

{
1

B2
∇ ·

[
B2∇⊥

(
1

B
∇‖Φ

)]}
= 0, (9)

where Φ is the scalar potential of the wave, ∇‖ = b · ∇, b = B/B, ∇⊥ = ∇− b∇‖.

Considering an eigenmode residing in the (µ, ν) gap, we assume that only two Fourier

harmonics with the mode numbers (m,n) = (m1, n1) and (m,n) = (m2, n2) = (m1 + µ, n1 +

νN) are significant in the Fourier expansion of Φ:

Φ = Φ1 exp(im1ϑ− in1ϕ) + Φ2 exp(im2ϑ− in2ϕ). (10)
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Substituting Eq. (10) to Eq. (9), keeping only the (m1, n1) and (m2, n2) harmonics of the

resulting equation, and using Eqs. (5) and (6), we obtain two coupled equations for Φ1 and

Φ2, which in the case of low aspect ratio look as follows:

1

r

d

dr

{
r

[
ω2

v̄2
A

(
1 +

εψψ
c(0,0)

2

)
− k2

1

(
1 +

εψψ
g(0,0)

2

)]
dΦ1

dr

}

−m2
1

r2

[
ω2

v̄2
A

(
1 +

εθθ
c(0,0)

2

)
− k2

1

(
1 +

εθθ
g(0,0)

2

)]
Φ1 − k1

r

[
r

(
1 +

εψψ
g(0,0)

2

)
k′1

]′
Φ1

+
1

2r

d

dr

[
r

(
ω2

v̄2
A

εψψ
c(µ,ν) − k1k2ε

ψψ
g(µ,ν)

)
dΦ2

dr

]
− m1m2

r2

(
ω2

v̄2
A

εθθ
c(µ,ν) − k1k2ε

θθ
g(µ,ν)

)
Φ2

−ω2


iεψθ

c(µ,ν)

m1 + m2

2rv̄2
A

dΦ2

dr
+

m2

2r

(
iεψθ

c(µ,ν)

v̄2
A

)′

Φ2




+
k1

2r

[
m1iε

ψθ
g(µ,ν)

d

dr
(k2Φ2) + m2

d

dr

(
iεψθ

g(µ,ν)k2Φ2

)]

+εψψ
g(µ,ν)

m2n1 −m1n2

2
ι′

dΦ2

dr
− k1

2r

d

dr

(
rεψψ

g(µ,ν)k
′
2

)
Φ2 = 0, (11)

1

r

d

dr

{
r

[
ω2

v̄2
A

(
1 +

εψψ
c(0,0)

2

)
− k2

2

(
1 +

εψψ
g(0,0)

2

)]
dΦ2

dr

}

−m2
2

r2

[
ω2

v̄2
A

(
1 +

εθθ
c(0,0)

2

)
− k2

2

(
1 +

εθθ
g(0,0)

2

)]
Φ2 − k2

r

[
r

(
1 +

εψψ
g(0,0)

2

)
k′2

]′
Φ2

+
1

2r

d

dr

[
r

(
ω2

v̄2
A

εψψ
c(µ,ν) − k1k2ε

ψψ
g(µ,ν)

)
dΦ1

dr

]
− m1m2

r2

(
ω2

v̄2
A

εθθ
c(µ,ν) − k1k2ε

θθ
g(µ,ν)

)
Φ1

+ω2


iεψθ

c(µ,ν)

m1 + m2

2rv̄2
A

dΦ1

dr
+

m1

2r

(
iεψθ

c(µ,ν)

v̄2
A

)′

Φ1




−k2

2r

[
m2iε

ψθ
g(µ,ν)

d

dr
(k1Φ1) + m1

d

dr

(
iεψθ

g(µ,ν)k1Φ1

)]

+εψψ
g(µ,ν)

m1n2 −m2n1

2
ι′

dΦ1

dr
− k2

2r

d

dr

(
rεψψ

g(µ,ν)k
′
1

)
Φ1 = 0, (12)

where ki = (miι − ni)/R0 with i = 1, 2; v̄A = B̄/(4πMini)
1/2; the parameters εij

c(µ,ν) are

introduced by the relationships

hij
c ≡ hij

g h−4 = δij +
1

2

∑
µ,ν

εij
c(µ,ν) exp(iµθ − iνNφ) (13)

for i, j = ψ, θ; h = B/B̄.
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We solve Eqs. (11) and (12) with the code BOA-E.20 Restricting ourselves to the low-

frequency part of the spectrum, we consider the case of EAEs [(µ, ν) = (2, 0)]. The cor-

responding coupling parameters for the considered configuration are shown in Fig. 6. Cal-

culations show that the modes do exist, at least, in the two-harmonic approximation used

here. Figure 7 shows the calculated wave functions of eigenmodes with the mode numbers

of the main harmonics being (m,n) = (−5,−2) and (m,n) = (−3,−2). The branches of AC

with the dominant mode numbers (m,n) = (−5,−2) and (m,n) = (−3,−2) are shown in

Fig. 3. We observe that the eigenfrequencies of the obtained eigenmodes do not cross these

branches, which means that the continuum damping of the modes should not be strong.

In addition, considering the AC branches calculated with only three wave harmonics taken

into account (in the same Figure), we conclude that the effect of the wave harmonics omit-

ted in the eigenmode calculations does not affect the qualitative behavior of the branches.

These eigenmodes can be destabilized by the resonances v‖ = vA and v‖ = vA/2. The first

resonance is possible due to the presence of the elliptical harmonic, ε
(20)
B , and the diamag-

netic harmonic, ε
(00)
B , in the magnetic field strength, where ε

(µν)
B = B(µν)/B0 when µ 6= 0

or ν 6= 0, ε
(00)
B = (B(00) − B0)/B0, B(µν) = B(µν)(r) is the (µ, ν) Fourier harmonic of B,

B0 = B(00)(r = 0). The second resonance is possible due to the toroidal harmonic, ε
(10)
B .

The toroidal harmonic dominates (see Fig. 8), but this does not mean that the resonance

v‖ = vA/2 plays the main role. The matter is that the growth rate is roughly proportional

to |ε(µν)
B |2|vr

‖|7fb(v
r
‖), where fb = fb(v) is the velocity distribution function of the beam ions

[this can be seen from Eq. (37) of Ref. 8]. Because Ec
<∼ Eb, with Ec ∼ T (Mb/Me)

1/3, the

beam distribution function depends on v considerably weaker than v−3, which follows from

fb ∝ (v3 + v3
c )
−1, with vc =

√
2Ec/Mb. Therefore, the first resonance will dominate during

the injection of protons into a deuterium plasma (then vb > vA), whereas the second one will

probably be main in the case of a hydrogen plasma (then vb < vA and, thus, the resonance

v‖ = vA is not so efficient).

IV. SUMMARY AND CONCLUSIONS

We have calculated the Alfvén continuum in NCSX, using the code COBRA. It differs

from that calculated in Ref. 29 by a better resolution of main gaps. Some parts of the

continuum have not been resolved yet; extensive additional calculations with larger matrices

12



are required to clarify these parts of the spectrum. It follows from the calculated AC that

the destabilization of TAE modes by the beam ions with a peaked radial profile is hardly

possible because the TAE gap is located at the plasma periphery. Another conclusion is that

the gaps in AC associated with absence of the axial symmetry of the magnetic configuration

(in real space) are located in a relatively low frequency range: In contrast to Wendelstein

7-AS and LHD, important HAE gaps reach the frequency range of the NAE, EAE and TAE

gaps [for instance, the (2, 1) gap crosses the NAE gap, the (4, 1) gap crosses the NAE, EAE,

and TAE gaps etc.]. This is explained by the low number of the field periods in NCSX

(N = 3). As is shown, the gap crossings considerably affect the AC structure: The gap

widths are strongly reduced at the radii corresponding to the crossings.

The existence of EAEs and the possibility of their destabilization by injected ions are

investigated. In particular, with the use of the code BOA-E, it is found that there exist

discrete EAEs in the lower part of the EAE gap, at least, in the approximation we use: The

EAEs and the corresponding eigenfrequencies are calculated by solving a pair of coupled

equations. These EAE modes can be destabilized by beam ions through the resonances

v‖ = vA and v‖ = vA/2. The role of these resonances is different in the cases of the proton

injection into hydrogen and deuterium plasmas.
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Figures

FIG. 1: Normalized Fourier harmonics of gψψ. Each curve is labeled by the corresponding coupling

numbers, (µ, ν).

FIG. 2: The Alfvén continuum for the ion density profile ni(r) = ni0(1 − 0.99r2/a2)1/2, ni0 =

1020 m−3. Notations: black dots, AC at certain radial points; large grey dots, the same continuum

but calculated with a smaller matrix size; solid lines, calculated boundaries of some gaps. The

gaps are labeled by the corresponding coupling numbers, (µ, ν). The frames encircle parts of the

continuum where the calculations have not converged.

FIG. 3: The low-frequency part of the Alfvén continuum shown in Fig. 2. Empty circles and

triangles show the continuum branches with the mode numbers, (m,n) = (−5,−2) and (−3,−2),

respectively; filled circles and triangles, the same branches but calculated with only the harmonics

(−5,−2), (−4,−2), and (−3,−2) taken into account.

FIG. 4: The same as Fig. 2 but for a hollow density profile, ni(r) = ni0(1 − 0.99r2/a2)/[1 −
r2/(0.8a)2]2.

FIG. 5: A part of the continuum shown in Fig. 2 near the crossing of the (3, 0) and (4, 1) gaps.

FIG. 6: Normalized (2, 0) Fourier harmonics of the metric tensor and the magnetic field strength.

FIG. 7: The wave functions of EAE modes with the mode numbers of the dominant harmonics

(−5,−2) and (−3,−2). Solid line corresponds to the eigenfrequency of 134 kHz; dotted line,

121 kHz.

FIG. 8: Normalized dominant Fourier harmonics of the magnetic field strength. Each curve is

labeled by the corresponding coupling numbers, (µ, ν).
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